Asymptotic Entropy and Green Speed for Random Walks on Countable Groups

نویسنده

  • Pierre Mathieu
چکیده

We study asymptotic properties of the Green metric associated with transient random walks on countable groups. We prove that the rate of escape of the random walk computed in the Green metric equals its asymptotic entropy. The proof relies on integral representations of both quantities with the extended Martin kernel. In the case of finitely generated groups, where this result is known (Benjamini and Peres [Probab. Theory Related Fields 98 (1994) 91–112]), we give an alternative proof relying on a version of the so-called fundamental inequality (relating the rate of escape, the entropy and the logarithmic volume growth) extended to random walks with unbounded support.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Entropy of Random Walks on Free Products

Suppose we are given the free product V of a finite family of finite or countable sets. We consider a transient random walk on the free product arising naturally from a convex combination of random walks on the free factors. We prove the existence of the asymptotic entropy and present three different, equivalent formulas, which are derived by three different techniques. In particular, we will s...

متن کامل

Random Walks on Infinite Graphs and Groups — a Survey on Selected Topics

Contents 1. Introduction 2 2. Basic definitions and preliminaries 3 A. Adaptedness to the graph structure 4 B. Reversible Markov chains 4 C. Random walks on groups 5 D. Group-invariant random walks on graphs 6 E. Harmonic and superharmonic functions 6 3. Spectral radius, amenability and law of large numbers 6 A. Spectral radius, isoperimetric inequalities and growth 6 B. Law of large numbers 9 ...

متن کامل

Random Walks on Periodic Graphs

This paper concerns random walks on periodic graphs embedded in the d-dimensional Euclidian space Rd and obtains asymptotic expansions of the Green functions of them up to the second order term, which, expressed fairly explicitly, are easily computable for many examples. The result is used to derive an asymptotic form of the hitting distribution of a hyperplane of codimension one, which involve...

متن کامل

Hausdorff Dimension of the Harmonic Measure on Trees

For a large class of Markov operators on trees we prove the formula HD = h=l connecting the Hausdorr dimension of the harmonic measure on the tree boundary, the rate of escape l and the asymptotic entropy h. Applications of this formula include random walks on free groups, conditional random walks, random walks in random environment and random walks on treed equivalence relations. 0. Introducti...

متن کامل

Se p 19 99 NUMERICAL CHARACTERISTICS OF GROUPS AND CORRESPONDING RELATIONS

1. Introduction Among various ways of " measuring " infinite groups, the most popular is the so called growth, i.e. the asymptotics of the number of words of given length. An enormous amount of works is devoted to this subject. However, there are more deep characteristics, and their relations to the growth and among themselves is maybe the most important subject of the theory of numerical chara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008